Global Paths of Time-Periodic Solutions of the Benjamin-Ono Equation Connecting Arbitrary Traveling Waves
نویسندگان
چکیده
We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the other side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.
منابع مشابه
Time-Periodic Solutions of the Benjamin-Ono Equation
We present a spectrally accurate numerical method for finding non-trivial timeperiodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the in...
متن کاملComputation of Time-Periodic Solutions of the Benjamin-Ono Equation
We present a spectrally accurate numerical method for finding non-trivial timeperiodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the in...
متن کاملGlobal Well-Posedness and Non-linear Stability of Periodic Traveling Waves for a Schrödinger-Benjamin-Ono System
The objective of this paper is two-fold: firstly, we develop a local and global (in time) wellposedness theory for a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrödinger-Benjamin-Ono system) for lowregularity initial data in both periodic and continuous cases; secondly, a family of new periodic traveling wa...
متن کاملSolitons And Periodic Solutions To The Generalized Zakharov-Kuznetsov Benjamin-Bona-Mahoney Equation
This paper studies the generalized version of theZakharov-Kuznetsov Benjamin-Bona-Mahoney equation. The functionalvariable method as well as the simplest equation method areapplied to obtain solitons and singular periodic solutions to theequation. There are several constraint conditions that arenaturally revealed in order for these specialized type ofsolutions to exist. The results of this pape...
متن کاملGlobal Well-Posedness and Non-linear Stability of Periodic Travelling Waves Solutions for a Schrödinger-Benjamin-Ono System
The objective of this paper is two-fold: firstly, we develop a local and global (in time) wellposedness theory of a system describing the motion of two fluids with different densities under capillary-gravity waves in a deep water flow (namely, a Schrödinger-Benjamin-Ono system) for lowregularity initial data in both periodic and continuous cases; secondly, a family of new periodic travelling wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008